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Abstract

We study the computational, communication, and scalability characteristics of a Computa-
tional Fluid Dynamics application, which solves the time accurate 
ow �eld of a jet using the
compressible Navier-Stokes equations, on a variety of parallel architectural platforms. The
platforms chosen for this study are a cluster of workstations (the LACE experimental testbed
at NASA Lewis), a shared memory multiprocessor (the Cray YMP), and distributed memory
multiprocessors with di�erent topologies| the IBM SP and the Cray T3D. We investigate
the impact of various networks connecting the cluster of workstations on the performance
of the application and the overheads induced by popular message passing libraries used for
parallelization. The work also highlights the importance of matching the memory bandwidth
to the processor speed for good single processor performance. By studying the performance
of an application on a variety of architectures, we are able to point out the strengths and
weaknesses of each of the example computing platforms.

Key Words: Computational 
uid dynamics, Navier-Stokes and Euler equations, compu-
tation and communication, scalability, shared memory, distributed memory, and network of
workstations architectures, interconnection network, message passing library.



1 Introduction

Numerical simulations play an important role in the investigation of physical processes as-
sociated with many important problems. The suppression of jet exhaust noise is one such
problem which will have a great impact on the success of the High Speed Civil Transport
plane. The radiated sound emanating from the jet can be computed by solving the full
(time-dependent) compressible Navier-Stokes equations. This computation can, however, be
very expensive and time consuming. The di�culty can be partially overcome by limiting the
solution domain to the near �eld where the jet is nonlinear and then using acoustic analogy
(see [12]) to relate the far-�eld noise to the near-�eld sources. This technique requires obtain-
ing the time-dependent 
ow �eld. In this study we concentrate on such 
ow �elds near the
nozzle exit. We solve the Navier-Stokes equations to compute time accurate 
ow �elds of a
supersonic axisymmetric jet. Our code is computationally very intensive and requires many
hours of CPU time on the Cray Y-MP. With the advent of massively parallel processors and
networks of workstations (NOWs), scientists now have the opportunity to parallelize compu-
tationally intensive codes and reduce turnaround time at a fraction of the cost of traditional
supercomputers. Recognizing this, a number of researchers [5, 10, 14, 18] have studied CFD
(Computational Fluid Dynamics) applications on speci�c parallel architectures. Our goal in
this study is to implement the numerical model derived from the CFD application described
above on a variety of parallel architectural platforms.

The platforms chosen for this study, all from the NASA Lewis Research Center, represent
a spectrum of parallel architectures that have been proposed to solve computationally in-
tensive problems: a shared memory vector multiprocessor (the Cray YMP), two distributed
memory multiprocessors with di�erent topologies| the IBM SP and the Cray T3D, and
a cluster of workstations connected via many networks (the Lewis Advanced Cluster Envi-
ronment (LACE) [9] experimental testbed). One important architecture that has not been
considered in our study is cache-coherent, massively parallel processors typi�ed by the DASH
architecture [11].

An earlier paper by the authors presented the results of a study of this application on
LACE [6]. This paper di�ers from the earlier one in two important aspects: i) It is compre-
hensive covering a gamut of architectures while the other examined the feasibility of NOW
architectures as low cost alternatives to expensive supercomputers and massively parallel
processors. ii) It focuses on the relationship of the performance results to the computation
and communication characteristics of the application, to the architectural aspects of the net-
works and the processing nodes, and to the programming tools. We have not laid emphasis
on the physical aspects of the application or the the details of the numerical model as we
have done in the other paper in keeping with the readership of two disparate communities.
For the sake of completeness, however, we have included the relevant details from the other
paper in this one.

In the next section we brie
y discuss the governing equations and the numerical model of
the application. Section 3 has a discussion of the parallel architectures used in the study
and the tools used for parallelizing the application. The parallelization of the application
is the subject of Section 4. Section 5 describes the experimental methodology. Section 6
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presents a detailed discussion of the results. The paper concludes with a brief discussion of
the lessons learned from this study and the issues that merit further investigation.

2 Numerical Model

We solve the Navier-Stokes and the Euler equations to compute 
ow �elds of an axisymmetric
jet. The Navier-Stokes equations for such 
ows can be written, in polar coordinates as
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F and G are the 
uxes in the x and r directions respectively, and S is the source term that
arises in the cylindrical polar coordinates, �ij are the shear stresses and �Tj are the heat

uxes. In the above equations p, �, u, v, T, e and H denote the pressure, density, axial and
radial velocity components, temperature, total energy and enthalpy.

We use the fourth-order MacCormack scheme, due to Gottlieb and Turkel [4], to solve the
Navier-Stokes and the Euler equations. This scheme uses predictor and corrector steps
to compute time accurate solutions. It uses one-sided di�erences (forward or backward) to
compute spatial derivatives at each predictor or corrector step. For the present computations,
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the operator L in the equation LQ = S, or equivalently Qt + Fz +Gr = S, is split into two
one-dimensional operators and the scheme is applied to these split operators. We de�ne L1

as a one-dimensional operator with a forward di�erence in the predictor and a backward
di�erence in the corrector. Its symmetric variant L2 uses a backward di�erence in the
predictor and a forward di�erence in the corrector. The predictor step in L1Q for the one-
dimension model/split equation Qt = Fz + S is written as

�Qi = Qn
i +
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Similarly in L2 the predictor step is
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This scheme becomes fourth order accurate in the spatial derivatives when alternated with
symmetric variants [4]. For our computations, the one dimensional sweeps are arranged as

Qn+1 = L1xL1rQ
n

Qn+2 = L2rL2xQ
n+1

This scheme is used for the interior points. In order to advance the scheme near boundaries,
the 
uxes are extrapolated outside the domain to arti�cial points using a cubic extrapolation
to compute the solution on the boundary. We use the characteristic boundary condition at
the out
ow. In our implementation, we solve the following set of equations to get the solution
at the new time for all boundary points.

pt � �cut = 0

pt + �cut = R2

pt � c2�t = R3

vt = R4

where Ri is determined by which variables are speci�ed and which are not. Whenever the
combination is not speci�ed, Ri is just those spatial derivatives that come from the Navier-
Stokes equations. For further details see [6].
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Figure 1: Axial momentum in an excited axisymmetric jet

Let r be the radius of the nozzle. Figure 1 shows a contour plot of axial momentum from the
solution of the Navier-Stokes equations for a domain of size 50r in the axial direction and
5r in the radial direction with a 250� 100 grid. The size of the domain and the chosen grid
represent a reasonable problem size. The result was obtained after about 16,000 time steps.
For all other results in this paper, we have used the same grid, but run the experiments for
5000 time steps to keep the computing requirements reasonable.

3 Parallel Computing Platforms

This section contains a brief discussion of the various platforms used in the study together
with the parallelization tools used.

3.1 NOW

The LACE testbed is regularly upgraded. The present con�guration has 32 RS6000 processor
nodes (nodes 1{32) and an RS6000/Model 990 (node 0) which is the �le server. These
nodes or subsets of them are connected through various networks with di�erent speed and
connection characteristics. All the nodes are connected through two Ethernet networks (10
Mbits/sec (Mbps)); one of them is for general use and the other is dedicated to \parallel"
use. Nodes 9{24 are interconnected through a FDDI interface with a peak bandwidth of 100
Mbps. It is convenient, for our purposes, to consider the nodes to be partitioned into a lower
half (nodes 1{16) and an upper half (nodes 17{32). The lower half has RS6000/Model 590
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CPUs (the CPU has a 66.5 MHz clock, 256KB data- and 32KB instruction caches) with the
following networks interconnecting the nodes: an ATM network capable of a peak bandwidth
of 155 Mbps and IBM's ALLNODE switch, referred to as ALLNODE-F (for fast), capable
of a peak throughput of 64 Mbps per link. The upper half has the slower RS6000/Model
560 CPUs (the CPU has a 50 MHz clock, 64KB data- and 8KB instruction caches) and
is connected through IBM's ALLNODE prototype switch, referred to as ALLNODE-S (for
slow), capable of a peak throughput of 32 Mbps per link. The ALLNODE switch is a variant
of Omega interconnection network and is capable of providing multiple contentionless paths
between the nodes of the cluster (a maximum of 8 paths can be con�gured between source
and destination processors). The present setup does not permit the use of more than 16
processors using the faster networks. The nodes have varying main memory capacity (64
MB, 128 MB, 256 MB, and 512 MB). We have used the popular PVM (Parallel Virtual
Machine) message passing library (version 3.2.2) to implement our parallel programs. We
will refer to the LACE cluster with RS6000/Model 560 processors as the LACE/560 and
those with the RS6000/Model 590 processors as the LACE/590.

3.2 Shared Memory Architecture

We used the Cray Y-MP/8, which has eight vector processors, for this study. The Cray
Y-MP/8 has a peak rating of approximately 2.7 GigaFLOPS. It o�ers a single address space
and the communication between processes executing on di�erent processors is through shared
variables. We parallelized the application by using explicit DOALL directives in addition to
exploiting the features of the parallelizing compiler on the Cray.

3.3 Distributed Memory Architecture

We parallelized the application on two distributed memory multiprocessors{ the IBM SP1
and the Cray T3D. The IBM SP1 has 16 processing nodes (the CPU in each node is a
RS6K/370 with a 50 MHz clock, 32KB data and instruction caches). The original system
has been software upgraded to make it function like a SP2. We will refer to this system
as the IBM SP in the paper. The nodes of the SP are interconnected through a variant of
the Omega network [17]. This network, similar in topology to ALLNODE, permits multiple
contentionless paths between nodes. We parallelized the application using MPL (Message
Passing Library), IBM's native message passing library and PVMe, a customized version of
PVM (version 3.2) developed by IBM for the SP.

The Cray T3D is also a distributed memory multiprocessor with the topology of a three
dimensional torus [15]. The machine used in our study has 64 nodes (8� 4� 2) (each node
has a CPU with a clock speed of 150 MHz and a direct mapped cache of 8KB), of which
only 16 were available in single user mode. Though the T3D supports multiple programming
models, we programmed the machine using the message passing paradigm resorting to Cray's
customized version of PVM (version 3.2).
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4 Parallelization

The factors which a�ect performance are listed below.

1. Single processor performance: we will explain various optimizations which resulted in
80% improvement in performance.

2. Communication cost: this cost depends on both the number of communication startups
and the volume of data communicated. Usually, the startup cost is 2{3 orders of magnitude
higher than the per item (usually byte) transfer cost. One method to reduce the e�ect of
startup cost is to group data to be communicated into long vectors.

3. Overlapped communication and computation: it is desirable that communication be
overlapped with computation as far as possible. Increasing the amount of overlapping,
however, could lead to �ner granularity of communication which then leads to a higher
number of startups.

4. Bursty communication: such communication could overwhelm the network's throughput
capacity temporarily leading to increased communication cost and process waiting time.
Some amount of burstiness is inevitable since parallel programs are usually written in the
SPMD (single program multiple data) style. There is also usually an inverse relationship
between bursty data and the number of communication startups.

From the above discussion it is clear that there is a subtle relationship among communication
startup cost, overlapping communication with computation, and bursty communication.

For the solution of Navier-Stokes equations, hereafter referred to as Navier-Stokes, each
internal subdomain exchanges its two 
ux values, velocity, and temperature along the bound-
ary with its appropriate (left or right) neighbor. To reduce the number of communication
startups, we group communication- �rst, all the velocity and temperature values along a
boundary are calculated and then packaged into a single send. We use a similar scheme for
the 
ux values that need to be communicated.

The computational and communication requirements of the application are shown in Tables
1 and 2. It is seen that the solution of Euler equations, hereafter referred to as Euler, has
roughly 50% of the computation the communication volume requirements ofNavier-Stokes
although the computation to communication volume ratio is about the same. Note that the
communication requirements are shown on a per processor basis. To give some idea of
the e�ects of communication, consider Navier-Stokes to be executing on a network of 10
workstations connected via Ethernet. Assume a reasonable throughput of 20 MFLOPS per
processor and the maximum throughput of 10 Mbps for Ethernet. The computation time
will then be approximately 725 seconds (145; 000=(10� 20)) while a lower bound on the
communication time, ignoring the e�ect of startups, is 1000 seconds (1000� 10=10)! Table
2 shows the ratio of computation to communication for the application in units of 
oating
point operations/byte transferred per processor and 
oating point operations/startup per
processor.

The application is parallelized by decomposing the domain by blocks along the axial direc-
tion only. Two dimensional partitioning was not attempted since a simple analysis shows
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Table 1: Application Characteristics

Appln Total Comp. Comm./Processor
(in FP Ops (x 106)) Start-ups Volume (MB)

N-S 145,000 80,000 120 (960Mb)
Euler 77,000 20,000 64 (512Mb)

Table 2: Computation-Communication Ratios

No. of Procs. FPs/Byte FPs/Start-up
Nav-Stokes Euler Nav-Stokes Euler

2 604 601 906K 1925K
4 302 301 453K 963K
8 151 150 227K 481K
16 76 75 113K 241K

that for the chosen grid size, such a partioning performs worse than a 1-D block partitioning.
For example, with a 2-D partitioning of 16 processors (4�4 blocks), the ratio of the number
of bytes transferred compared to 1-D partitioning is 1.25. This ratio will, of course, decrease
when we increase the problem size. Another disadvantage with 2-D partitioning is that the
number of start-ups is higher. For the above example, the corresponding ratio for the two
partionings is 1.6; this ratio does not decrease with the problem size. Since the startup cost
dominates the transmission cost in most current architectures including the ones used in this
study (the ratio is highest for LACE and least for Cray T3D) and the average transmission
volume per startup is only moderate (Table 1), we did not experiment with 2-D partitioning.

The parallelization on the Cray Y-MP was done di�erently (it was much easier also) since it
is a shared memory architecture: we did some hand optimization to convert some loops to
parallel loops, used the DOALL directive, and partitioned the domain along the orthogonal
direction of the sweep to keep the vector lengths large and to avoid non-stride access to most
of the variables.

5 Experimental Methodology

The performance indicator is the total execution time. All experiments were conducted in
single user mode. The execution times reported are for single runs since we found that the
experiments were repeatable with negligibly small discrepancies. For example, with LACE,
the deviation from the mean is about 1% or less ([6]).

Experiments using a single processor were done on an IBM RS6K (Model 560) workstation
of LACE. The performance of the original code (Version 1) for both applications is shown
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in Figure 2.
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Figure 2: Execution time on a single processor (RS6000/560)

We found that most parts of the application were limited by the poor performance of the
memory hierarchy involving the cache and the main memory. Improved cache performance
was the key and this was achieved by accessing arrays in stride-1 fashion wherever possible
(using the loop interchange optimization). The modi�ed program, called Version 3 (the
optimizations were performed in a di�erent order than presented in the paper), resulted in
this version running faster by approximately 50%, compared to Version 2. We experimented
with a number of other modi�cations, the following of which yielded some improvement:
better register usage by collapsing multiple COMMON blocks into a single one (Version 5),
strength reduction (replace exponentiations by multiplications wherever feasible{ Version 2),
replace division by multiplication wherever feasible since the former are relatively expensive
(a reduction from 5:5 � 109 divisions to 2:0 � 109 was achieved{ Version 4). All these
optimizations yielded an overall improvement of roughly 80% (from 9.3 MFLOPS to 16.0
MFLOPS) as illustrated in Figure 2. The optimizations were incorporated in sequence so
that Version 5 contains all the above mentioned optimizations.

We parallelized Version 5 on di�erent computing platforms in accordance with the ideas
presented in the last section. On each platform, we measured the execution time as a
function of the number of processors (up to 8 with Cray Y-MP, up to 16 with LACE, IBM
SP, and Cray T3D).

We have studied the performance of LACE with four networks of di�ering characteristics
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using \o�-the-shelf" PVM as the message passing library. With the IBM SP, we have studied
the impact of parallelizing the application with two message passing libraries- IBM's native
MPL and a customized version of PVM called PVMe.

In all experiments, wherever feasible, we have separated the execution time into two additive
components: processor busy time and non-overlapped communication time. The
processor busy time is itself composed of the actual computation time and the software
overheads associated with sending and receiving messages. An accurate separation of these
components is not possible, however, unless we have hardware performance monitoring tools.
The non-overlapped communication time could also include the idle time of a processor
waiting for a message.

Version 5 of the application does not make any special attempts to overlap communication
with computation. Version 6 does overlapping by computing the stress and 
ux components
of the interior part of each subdomain while the processor is waiting for the velocity and
temperature vectors from its neighbors. Figure 3 shows the timeline of a processor's activity
for both these versions. As mentioned earlier, the two \
ux columns" nearest each boundary
are combined into a single send. We have experimented with sending the 
ux columns one
at a time to avoid bursty communication. This variant is called Version 7.

Calculate

VEL, TEMP

Send

VEL, TEMP

Calculate
STRESS, FLUX at interior

Receive

Update Subdomain

VEL, TEMP

Calculate

STRESS, FLUX at Boundary

Send

FLUX

Update Interior

Receive

FLUX at Boundary

Update Boundary

VERSION  6

Overlapped

Communication and

Computation

VERSION  5

Calculate
VEL, TEMP

Send

VEL, TEMP

Receive

VEL, TEMP

Calculate

STRESS, FLUX

Send

FLUX

Receive

FLUX

Figure 3: Timeline of processor activity

We found that the execution time improvement with Versions 6 and 7 were either minimal
or even worse in many experiments. Hence all our experiments were conducted with Version
5. We do mention, however, the impact of these versions on di�erent networks of LACE in
Section 6.1.

The next section presents a detailed discussion of the results from our experiments.
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6 Results

The execution times of Navier-Stokes and Euler have been plotted as a function of the
number of processors for each computing platform, using a log-log scale to facilitate mean-
ingful presentation.

6.1 Performance of LACE
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Figure 4: Navier-Stokes execution time on LACE

Figure 4 shows the performance ofNavier-Stokes on di�erent networks of LACE- ALLNODE-
F, ALLNODE-S, and the upper-half Ethernet. The performance of the ATM and the FDDI
networks are almost identical with ALLNODE-F and ALLNODE-S respectively. Hence the
performance of the ATM and FDDI networks are not shown.

The close performance of ALLNODE-F and ATM, and ALLNODE-S and FDDI can be
attributed to the following reason: the slower link speed of ALLNODE (64 Mbps/32 Mbps)
is balanced by its ability to set up multiple contention-free paths while ATM (155 Mbps)
or FDDI (100 Mbps) with their faster links do not permit multiple physical paths in the
network.

With ALLNODE, the execution time falls almost linearly with increasing number of processors{
sublinearity e�ects begin to show, however, beyond 12 processors. ALLNODE-F is about
70%{80% faster than ALLNODE-S. This can be attributed to both an improved network
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(which is twice as fast) and the superior performance of the 590 model (33% faster clock, data
and instruction caches which are 4 times bigger, and memory bus which is 4 times wider than
the 560{ these contribute to faster instruction execution, better cache hit ratios, and lower
cache miss penalty respectively). Ethernet performance reaches its peak at 8 processors-
beyond this, the communication requirements of the application overwhelm the network.
The inability of Ethernet to handle tra�c beyond 8 processors is shown by the following
simple argument: Table 2 shows that with 8 processors, Navier-Stokes produces a byte
for communication after it has completed 151 
oating operations on the average. Consider
a 1 second interval and each processor operating at 20 MFLOPS. During this interval, each
processor produces 1.06 Mb for communication, on the average. This translates to approx-
imately 8.5Mbs from all the 8 processors. Ethernet is capable of supporting 10Mbps peak-
the performance seen by an application will be a fraction of this bandwidth, however; it is
not surprising, therefore, the performance gets steadily worse beyond 8 processors.
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Figure 5: Components of execution time (Navier-Stokes; LACE)

Figure 5 aid in a more in depth analysis of the performance of LACE. The execution time is
separated into two additive components as explained in the previous section. It is seen that
the processor busy time falls linearly with the number of processors. With Ethernet, the
non-overlapped communication time increases superlinearly with the number of processors.
With both ALLNODE switches, this time remains steady up to 10 or 12 processors beyond
which it begins to rise. The di�erence in processor busy times and the communication times
between the two ALLNODE con�gurations can be attributed to the superior node and the
network respectively.
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Figure 6: Communication optimization (Navier-Stokes; LACE)

Figures 6 and 7 show the performance of Versions 5, 6, and 7 with Ethernet and ALLNODE-S
(the trends are similar with ALLNODE-F). The performance of Version 6 (with overlapped
communication and computation, as explained in Section 5) is very close to that of Ver-
sion 5 for both Ethernet and ALLNODE-S. Overlapping does not increase the number of
communication startups. With Version 6, since computations for the subdomain have to be
broken into separate ones for the interior and the boundary (only the former computations
can be overlapped with communication), the loop setup overheads are higher. Further, the
cache performance also degrades slightly due to loss of temporal locality. Consequently, these
overheads o�set any gain due to overlapping.

Version 7 attempts to reduce bursty communication at the cost of increased number of
communication startups. Not surprisingly, Ethernet performs better with Version 7 than
with Version 5. The performance of ALLNODE-S is appreciably worse than Version 5,
however. Since ALLNODE-S can handle the communication requirements of the application,
reducing bursty communication only harms the performance since the number of startups
increase.

6.2 Comparative Performance

Figures 8 and 9 show the performance of the application on the four computing platforms we
have chosen for this study| LACE, Cray Y-MP, Cray T3D and IBM SP. The performance
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Figure 7: Communication optimization (Euler; LACE)

of LACE is reported for ALLNODE-F and ALLNODE-S.

Surprisingly, LACE, even with ALLNODE-S, outperforms SP even though the former uses
o�-the-shelf PVM and the latter uses MPL, IBM's native message passing library. (Our
version of) MPL imposes a limit on the number of (non-blocking) send primitives that can
be simultaneously active- this limit is lower than the requirements of the application; hence,
we were forced to use blocking send primitives. We suspect this to be one contributing
factor to the relatively poor performance. The CPU on the SP is intermediate in speed (62.5
MHz clock) between the 560 (50 MHz) and the 590 (66.6MHz). Another contributor to the
poor performance of the SP is the relatively small size of the data cache (32KB compared
to 64KB on LACE/560 and 256KB on LACE/590).

For a comparison of ALLNODE-F and ALLNODE-S, see Section 6.1 (Figures 4 and 5).

Another surprising result is the relatively poor performance of Cray T3D which is consistently
worse than ALLNODE-F and is worse than ALLNODE-S for less than 8 processors. The
T3D's CPU has a peak rating which is 2.3X and 3X the rating of the 590 and 560 models,
respectively. We attribute the T3D's poor performance to the small direct-mapped cache
of 8KB size (both the 560 and 590 have 4-way set-associative date caches of sizes 64KB
and 256 KB respectively; in addition they have 2-way set associative instruction caches of
sizes 8KB and 32KB). Poor single-processor performance on the T3D has also been reported
elsewhere [17]. These results stress the importance of superior cache design to the overall
performance. A reasonably fast CPU with a large, set associative cache and a high bandwidth
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Figure 8: Execution time of Navier-Stokes on computing platforms
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Figure 9: Execution time of Euler on computing platforms
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Table 3: Speedup Characteristics

No. of Procs. Architectural Platform
ALLNODE-S ALLNODE-F IBM SP Cray T3D

4 3.2 3.4 3.8 3.9
16 7.5 7.9 13.3 14.6

bus connecting the cache and main memory performs superior to a much faster CPU with
poorly designed CPU-cache and cache-main memory interfaces.

Table 3 shows the speedup characteristics of Navier-Stokes with various architectures.
The speedups, measured relative to the single processor performance of the corresponding
architecture, are shown with 4 processors and 16 processors to illustrate the network charac-
teristics of each architecture. Both T3D and SP exhibit very good speedup characteristics,
with almost linear speedup, indicating that the corresponding networks can sustain the com-
munication requirements of the application. Though both the ALLNODE networks have a
reasonable speedup at 4 processors, they degrade rapidly and the speedup is only modest
at 16 processors. It is only reasonable to expect this 
attening trend to continue with in-
creasing number of processors on NOW architectures. Not surprisingly, ALLNODE-F has a
slightly better speedup than ALLNODE-S. Also, observe from Figures 8 and 9 that beyond
8 processors, T3D with its superior network speed (150 MB/sec peak transfer rate and a
relatively small setup cost) performs better than ALLNODE-S.

Cray Y-MP has by far the best performance. The execution time shown is the connect time
in single user mode (this includes the I/O time also which we were not able to separate
from the computation time). Considering the e�ect of connect time also, the Y-MP scales
modestly achieving a speedup of about 3.5 with 8 processors for both the applications. With
a pro�ling tool which simulates the execution of an 8-node Y-MP on a single node (and does
not include the I/O overheads), we obtained a speedup of 7.1. Observe that the LACE/590
with 16 processors is about 8% faster than a single node of the Y-MP.

With architectures which use message passing libraries, the relatively poor performance can
be attributed to large setup overheads and the resulting increase in processor waiting times
with increasing number of processors. These overheads arise mainly from the multiple times
that data to be communicated is copied and from the context switching overheads that arise
in transferring a message between the application level and the physical layer of the network
for transmission or reception. If NOW architectures are to be feasible as massively parallel
processors, it is clear that both the interconnection network and the message passing library
be implemented e�ciently. Such e�ort is already under way [1].
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6.3 Comparison of Message Passing Libraries

Figures 10 and 11 compare the performance of the PVMe and the MPL message passing
libraries on the SP| the execution times have been separated into non-overlapping compu-
tation and communication components. The graphs show that MPL is consistently faster
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Figure 10: Comparison of MPL and PVMe (Navier-Stokes; IBM SP)

than PVMe by approximately 75% for Navier-Stokes and approximately 40% for Euler.
Observe also that the amount of non-overlapped communication is not only negligibly small
but that it decreases with the number of processors though the actual communication in-
creases. This is an interesting phenomenon since it implies that there is increased overlapping
of computation and communication with the number of processors. Note however that the
computation part also includes the setup overheads of communication. This phenomenon is
not seen in case of LACE (see Figure 4) where the non-overlapped communication increases,
further attesting to our previous observation that the MPL (and PVMe) library does not
perform as well as PVM does on LACE.

6.4 Load Balancing

Finally, how well is the application load balanced? The amount of computation for the appli-
cation is evenly distributed but this may not always translate to a load balanced execution.
We were able to measure the processor busy times (this time does not include the processor
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Figure 11: Comparison of MPL and PVMe (Euler; IBM SP)

waiting time) for Navier-Stokes on each processor of the SP. Figure 12 shows that we were
able to achieve almost perfect load balancing.

7 Discussion and Conclusion

In this paper we have studied the computational, communication, and scalability characteris-
tics of a typical CFD application on a variety of architectural platforms. The study indicates
that NOW architectures have the potential to be cost-e�ective parallel architectures if the
networks are made reasonably fast and message passing libraries are e�ciently implemented
to circumvent the traditional overheads involved in transferring a message between the ap-
plication level and the physical layer of the network.

The study also highlights the importance of single processor performance to achieve good
performance. With fast, o�-the-shelf RISC processors available, the bottleneck seems to be
the performance of the cache and the memory hierarchy. A proper cache design is critical to
good performance. We believe that the reason for relatively poor performance of the T3D,
in spite of a fast processor, is the small, direct-mapped cache.

A traditional vector multiprocessor still outperforms multiprocessors of modest to medium
size. Parallelizing an application using message passing libraries is rather tedious and even
error-prone but with distributed memory multiprocessors, this e�ort is worthwhile since good
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Figure 12: Processor busy times (Navier-Stokes; IBM SP)

scalability is achievable.

Resource limitations have forced us to limit our study to 16 processors. We hope to extend
the study to larger multiprocessors and to other parallelization tools as resources become
available. For reasons mentioned in Section 4, we have not explored decomposition along
both the axial and radial directions. A future goal is to conduct the study for a larger domain
to understand the physics of the problem better and a �ner mesh to compute the jet noise
directly from the 
ow �eld. We plan to explore the e�ects of 2-D partitioning with a larger
domain and a �ner mesh.
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